Ethanol is broken down mainly by oxidation by alcohol dehydrogenase - ADH - resulting in the generation of H+ ions, an increase in the NADH:NAD ratio, and a resultant change in the redox state of the liver.
The net result is that H+ replaces fatty acids as a fuel with the generation of triglycerides and a fatty liver. The NADH:NAD redox changes inhibit the oxidation of fatty acids via the citric acid cycle so that they accumulate and contribute to the increased production of triglycerides.
Lipoprotein synthesis is also increased so that some of the accumulated triglycerides are transported into the circulation producing hyperlipidaemia.
Some of the H+ is used to convert pyruvate to lactate. Hyperlacticacidaemia leads to renal acidosis, uriacidaemia and gout. Reduction of pyruvate to glucose produces hypoglycaemia.
Some alcohol is also metabolised by a microsomal ethanol oxidising system - MEOS - which is inducible by MEOS. This is important:
Add information to this page that would be handy to have on hand during a consultation, such as a web address or phone number. This information will always be displayed when you visit this page